Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy
نویسندگان
چکیده
Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy.
منابع مشابه
Dissociation of Bcl-2–Beclin1 Complex by Activated AMPK Enhances Cardiac Autophagy and Protects Against Cardiomyocyte Apoptosis in Diabetes
Diabetic cardiomyopathy is associated with suppression of cardiac autophagy, and activation of AMP-activated protein kinase (AMPK) restores cardiac autophagy and prevents cardiomyopathy in diabetic mice, albeit by an unknown mechanism. We hypothesized that AMPK-induced autophagy ameliorates diabetic cardiomyopathy by inhibiting cardiomyocyte apoptosis and examined the effects of AMPK on the int...
متن کاملTetrahydrobiopterin Protects Against Hypertrophic Heart Disease Independent of Myocardial Nitric Oxide Synthase Coupling
BACKGROUND Nitric oxide synthase uncoupling occurs under conditions of oxidative stress modifying the enzyme's function so it generates superoxide rather than nitric oxide. Nitric oxide synthase uncoupling occurs with chronic pressure overload, and both are ameliorated by exogenous tetrahydrobiopterin (BH4)-a cofactor required for normal nitric oxide synthase function-supporting a pathophysiolo...
متن کاملMyocardial Adipose Triglyceride Lipase Overexpression Protects Diabetic Mice From the Development of Lipotoxic Cardiomyopathy
Although diabetic cardiomyopathy is associated with enhanced intramyocardial triacylglycerol (TAG) levels, the role of TAG catabolizing enzymes in this process is unclear. Because the TAG hydrolase, adipose triglyceride lipase (ATGL), regulates baseline cardiac metabolism and function, we examined whether alterations in cardiomyocyte ATGL impact cardiac function during uncontrolled type 1 diabe...
متن کاملInterferon- Gamma- Inducible Guanosine Triphosphate Cyclohydrolase 1 (GTP-CH1) Pathway Is Associated with Frailty in Egyptian Elderly
Background: Chronic low-grade inflammation may be a cardinal pathophysiologic feature in the pathogenesis of frailty. Interferon-gamma (INF-γ) is an understudied proinflammatory cytokine in frailty that induces many inflammatory pathways including the guanosine triphosphate cyclohydrolase 1 (GTP-CH1) pathway. Our aim was to evaluate the GTP-CH1 pathway in Egyptian frail elderly subjects. ...
متن کاملFoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival.
Diabetic cardiomyopathy is a term used to describe cardiac muscle damage-induced heart failure. Multiple structural and biochemical reasons have been suggested to induce this disorder. The most prominent feature of the diabetic myocardium is attenuated insulin signalling that reduces survival kinases (Akt), potentially switching on protein targets like FoxOs, initiators of cell death. FoxO1, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016